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Abstract

Shadow mapping is perhaps the most pervasive method for creating convincing
shadows in computer graphics. However, because it is an image-space algorithm it
must contend with aliasing issues caused by finite and discrete sampling.

This exposition differs from previous work on shadow maps in that it pinpoints
the one remaining degree of freedom in the shadow mapping process – the angle of
the film plane at the light – and uses this understanding to develop a framework for
categorizing the effects of film plane angle change on the sampling pattern in pixel
space, allowing a quantitative analysis of how to exploit this degree of freedom in
mitigating the aliasing problem. This presentation focuses on making a thorough
study of the implications for the flatland, or two-dimensional world, case. In the
2D world, our algorithm can always find the optimal setting of the light plane,
consistently providing factors of 2-3 improvement over previous methods.

Because no a priori assumptions can be made about a dynamically changing
scene in a real-time context, an initial low-resolution rendering pass is required to
allow informed decisions to be made. The rest of the algorithm can be broken up
into two parts:

1. deciding the optimal angle for a single light frustum – given a per-
pixel measure of sampling “badness” for some initial setting of the light’s film
plane, we can parameterize by angular offset the sampling error that would be
incurred through use of a different film plane orientation. This allows us to
solve for the optimal angle using standard calculus techniques.

2. splitting the light frustum – we greedily partition the light hull into smaller
light frusta and allocate resolutional resources so as to minimize the sum total
of the error metric over the multiple frusta.

Another benefit of understanding the degree of freedom as light plane angle is
that shadow map rendering can be computed as “normal” without having to deal
with the complexities of first moving into a different projective space as suggested
by some previous work.
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Chapter 1

Introduction

“To think of shadows is a serious thing.”
– Victor Hugo

Shadows play essential roles in human perception. They provide visual cues
for identifying shape and allow viewers to extract spatial understanding from two-
dimensional images. An image lacking proper shadowing appears artificial because
it presents lighting information that conflicts with the natural intuitions we develop
from real world experiences. As a consequence, a number of algorithmic approaches
for drawing shadows have been developed to address this aspect of realistic image
creation.

In the context of real-time rendering (i.e., polygon rasterization), the difficulty
lies in the fact that triangles are treated independently and therefore lack more
global information about their surrounding environment. A couple techniques have
been developed to get around this limited knowledge possessed by each triangle.
The presentation of shadowing techniques here assumes a familiarity with the basics
of image rendering and texture mapping. For a review, Appendix A provides all the
necessary preliminaries.

1.1 Projected Planar Shadows

This approach assumes all shadows will be cast onto a flat floor [1]. Each polygon
of a shadow casting object gets its vertices projected onto the plane representing
the floor. This defines a polygon on the floor that can be rendered in black or
a subtractive color to create the effect of having a shadow on the ground. This
method does not scale well for non-uniformly flat shadow receivers because more

3



4 CHAPTER 1. INTRODUCTION

tricky intersection tests must take place and possible subdivision of the projected
shadow triangle may be required to ensure the shadow is always drawn on the surface
top.

1.2 Shadow Volumes

One method that has gained popularity in the real-time rendering contexts is the so-
called Shadow Volume technique [1, 2]. Figure 1.1 illustrates the algorithmic process.
In this approach, the silhouette of an object is determined from the perspective of
the light. A polyhedral volume is then constructed connecting the light source to
the silhouette and the volume is extruded to infinity (or far enough to encompass all
geometry of potential interest). The geometry in the scene is rendered a first time as
normal without regard for shadowing information. The constructed shadow volume
is then rendered from the perspective of the viewer’s camera, giving back-facing
polygons an opposite sign from the front-facing ones (the sign is added into a buffer
called the stencil buffer). For each pixel, the signs of front-facing and back-facing
polygons are added into the stencil buffer only if the polygon depth at that pixel is
closer than the value stored in the depth buffer created from the initial rendering
pass. Objects in the scene living inside the shadow volume will be behind the front-
facing shadow volume polygons, but in front of the back-facing ones. Therefore,
the stencil buffer will have a nonzero value for all the pixels making up that object
since front-facing polygons will pass the depth test and back-facing ones will not.
For pixels corresponding to geometry behind the shadow volume, both front-facing
and back-facing polygons will be rendered and the signs will cancel. For pixels
corresponding to geometry in front of the shadow volume, neither front-facing nor
back-facing polygons will be drawn, so the stencil buffer will remain its initial zero
at those locations. A third rendering pass is then made in which a subtractive color
is applied to all those pixels whose stencil buffer counterparts are nonzero.

1.2.1 Benefits of Shadow volumes

Because shadow volumes take advantage of geometric knowledge during rendering,
they allow for per-pixel accuracy during image creation. Current hardware also
provides stencil buffers and other features making them quite practical for real-time
rendering.
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Figure 1.1: Shadow Volume
The region in which the viewer sees only the front-facing shadow volume polygons
is shadowed; the region in which both front-facing and back-facing shadow volume
polygons are visible corresponds to unshadowed scenery

1.2.2 Drawbacks of Shadow Volumes

The requirement that shadow volumes have access to geometric information is lim-
iting. While it allows for pixel level accuracy, it restricts the allowable geometry
representations for real-time applications. Shadow volumes mandate efficient access
to geometric connectivity or else demand two dot product tests per edge to deter-
mine silhouettes as seen from the light. Such demands complicate data structures
and tend not to scale well with increased scene complexity. If the scene possesses
occluders with intricate silhouettes, shadow volume rendering can easily reach the
fill rate limitations of the hardware. The rendering passes over shadow volume ex-
trusions also require “watertight” precision so that rounding errors do not cause
any pixels on shadow volume edges to be missed or drawn multiply. Such errors can
cause missing or unexpected spots of shadowing to appear in the scene.

1.3 Shadow Maps

In shadow mapping, a picture (more precisely, a depth map) of the scene is first
captured from the viewpoint of the light. Subsequently, when rendering the image
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from the perspective of the viewer’s camera, depth values can be mapped to the
light’s domain to compare whether such points are lit or are in shadow (i.e., whether
those depth values correspond to ones closest to the light or not) [1, 4, 7, 9, 10].
This depth test gives a binary result (shadowed or unshadowed) for each pixel. For
convenience, each depth texture sample will henceforth be referred to as a lexel1.
Fortunately, the mapping back per pixel to the lexel domain doesn’t have to be as
costly as sending out shadow feelers. Given the mapping to the lexel domain of a
polygon’s vertices, the image of any point in the convex hull can be found through
interpolation.

1.3.1 Benefits of Shadow Maps

Shadow mapping is flexible and relatively fast. Being a purely image based ap-
proach, it requires no extra geometry connectivity information and can be used in
conjunction with any existing algorithm for rendering.

1.3.2 Drawbacks of Shadow Maps

Because finite and discrete sampling occurs in the lexel domain, reconstruction at
the camera’s viewpoint may exhibit aliasing due to undersampling and/or point sam-
pling. Pictorially, these artifacts appear as blocky shadow edges or distinctly jagged
edges between shadowed and unshadowed regions. Aliasing can also result from
other factors such as finite depth precision, but those topics will not be addressed
here.

1.3.3 Depth Bias Issues

Figure 1.2 demonstrates one of the problems produced by discrete sampling. Because
the depth values of the world are discretely sampled from the viewpoint of the light,
a single lexel depth value is used for an entire slice of the world. That single value is
unable to capture the possibly varying geometric depths across the rays spanned by
the lexel. If a view camera pixel center intersects the world slice in a slightly different
direction than that sampled by the light, the depth value compared against for
shadow determination may be incorrect. This depth value offset can cause shadow
“acne” because a surface that should be lit self-shadows itself. An additive depth
bias is introduced to counter this problem. Determining the appropriate bias to use
can be tricky and so a bias that is too large (causing the shadow to shift from its

1shorthand for light texture element
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Figure 1.2: Depth Bias
Because a single depth is given to a whole lexel frustum, shadow acne can result
from a mismatch in the point sampled in the lexel and pixel frustum intersection.
Here, although the pixel should determine that the geometry is unshadowed, the point
sampled is farther from the light than the lexel sample; therefore it will instead be
reported as shadowed.
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Figure 1.3: Projecting pixels as lexel domain footprints

real position) is usually preferred to one that is too small (which results in acne)
[1].

1.3.4 Sources of Aliasing

For simplicity, we will describe the aliasing issues in flatland, or the two-dimensional
world. Given some pixel size and some lexel size (both measured with consistent
units in world space), we would like to quantify the number of lexels covered by the
image, or footprint, of the pixel when mapped to the lexel domain. The relation is
approximately given by [9]:

f = sp
dp

dl

cos θl

cos θp

where f is the size of the pixel footprint in the lexel domain, sp is the size of a
pixel, dp is the distance from the near view plane to the world geometry, dl is the
distance from the geometry to the lexel plane, and θp and θl are the angles between
the geometry normal and vector to the pixel and lexel planes respectively.

When spdp is much smaller than dl, f is small, meaning that many neighboring
pixel footprints will fit within one lexel. In that case, numerous pixels depend on
the same lexel sample to make shadowing decisions. This situation leads to a blocky
shadow. Intuitively, spdp is small relative to dl when the view camera is moved
in close to the geometry and therefore the viewer sees the finite resolution of the
shadow map. This is called perspective aliasing.



1.3. SHADOW MAPS 9

(a) (b)

Figure 1.4: Aliasing problems to address
(a) perspective aliasing – one lexel covers a large portion in the view camera’s image
space (b) projective aliasing – a large polygon is covered by a single lexel depth value

If spdp is large compared to dl, then f is large and covers multiple lexels in
the shadow map. Supposing the closest lexel to the footprint center is used as the
light depth sample, then slight changes in the view camera can lead to inversions of
the binary shadow decision if the footprint covers lexel depths for which the shadow
test both passes and fails. This leads to the viewer seeing jagged shadow edges
which seem to “swim” with animated movement of the camera. The problem here
is point sampling the lexel depth map undersamples the available information for
shadow determination. Ideally, all the information from the entire footprint would
be considered in determining the final pixel shadow properties.

If cos θl is small relative to cos θp then f is again small and one lexel sample
covers a number of pixels. This scenario occurs when the light rays happen to be
near parallel to the geometry surface and therefore stretch over a significant range
of depths. This is referred to as projection aliasing. The case in which cos θl is large
relative to cos θp requires consideration of the entire footprint to reduce aliasing.

1.3.5 Extensions of the Shadow Map Algorithm

Percentage Closer Fitting addresses the problem in which a pixel in the image
maps to a region covering multiple lexels in the light depth buffer [7, 10].
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In such cases, point sampling (e.g., simply choosing the closest point to the
mapped image of the pixel center) produces unsatisfactory results because
slight changes in the view camera position or orientation can switch the binary
shadow decision to its inverse. Reeves, Salesin, and Cook, who presented the
work noted that standard filtering of the depth map values will not solve the
problem because interpolated depth values may yield a depth for which no
actual geometry exists [7]. Instead, filtering must be performed on the results
of the shadow tests in the footprint. Shadowing can then be determined to
be proportional to the percentage of shadow tests that claim the point is in
shadow. In some cases, the pixel footprint may cover such a large region in the
lexel domain that Monte Carlo or other sampling methods must be employed
to speed up the filtering process. Although percentage closer filtering remedies
the problem of undersampling the lexel samples when deciding upon a pixel
color, it does not solve aliasing due to undersampling of the world geometry
from the light’s point of view.

Adaptive Shadow Maps tackle the issue of undersampling from the perspective
of the light. The approach creates a hierarchical depth map for the lexel
domain [4]. It performs multiple passes to determine which portions require
greater refinement and tunes the local resolution appropriately. Traversal of
this hierarchical data for updates prevents this technique from being realized
in current hardware. A dynamically changing scene would require the hier-
archical updates each frame and therefore prevents this technique from being
employed in real-time rendering.

Perspective Shadow Maps attack the undersampling problem by taking a snap-
shot of the scene in a different space [9]. Instead of creating a depth map for
the scene in world space, it performs standard shadow mapping in the view
camera’s post-projective space (the world as the viewer sees it). The viewer’s
projective transform effectively maps the view frustum into the canonical cube
[-1,1]3 so that the viewer’s image is created by a simple orthographic projec-
tion of the scene onto the near plane of the cube. This means that linearly
spaced samples in the viewer’s image (near) plane translate into samples that
are linearly spaced on planes in the cube. The hope is that the viewer sam-
ples mapped onto the geometry in the cube are more uniform when seen from
the viewpoint of the light post-projective transform. Therefore the uniform
grid sampling at the light will better accommodate the requirements for re-
construction during image creation.
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Figure 1.5: Lexel plane angle affects sampling
Uniform spacing on lexel plane corresponds to non-uniform depth sampling on plane
in the world; the linear rational relationship is determined by the angle of the lexel
plane

1.4 Our Approach

The approach we take builds off previous work done on standard and perspective
shadow maps [1, 4, 7, 9, 10]. Although Stamminger and Drettakis make the inter-
esting observation that shadow maps are more efficient in their use of lexel samples
post-projective transformation, they do not explicitly identify the extra degree of
freedom that allows their approach to mitigate shadow mapping’s largest prob-
lem [9]. Consequently, they can only present a heuristic method for improving the
quality of the generated shadows.

Note that (as shown by the decomposition of the projective mapping in section
A.2) once the basis of the light’s frame is chosen, all other projection mapping pa-
rameters are fixed. Therefore, the only remaining degree of freedom in the shadow
mapping algorithm affecting sampling pattern is the angle of the light’s film plane,
represented as a rotation of the light’s axes. It is this degree of freedom that is
implicitly being exploited by the perspective shadow maps algorithm. In this pre-
sentation, we develop the framework for understanding shadow quality in terms of
this degree of freedom and from there put forth quantitative arguments for an opti-
mal orientation of the lexel plane. Recognizing the degree of freedom as lexel plane
angle also has the additional benefit that sampling optimization need not take place
in a different projective space, thereby eliminating the need to handle corner cases
such as the light hull straddling the infinity plane.
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Figure 1.5 illustrates how changing the lexel plane angle can affect the sampling
of geometry depths within the world. Note that uniformly spaced intervals on the
lexel plane correspond to non-uniform sampling in the world. Ideally, the sampling
pattern in the world induced by the light’s lexel plane will match the sampling
pattern created if the viewer casts the pixel grid onto the world geometry. Intuitively,
when choosing the lexel plane angle, it is advantageous to orient the lexel plane so
that it points toward the densest region of pixel samples in the world.

We start our analysis by developing some metrics to quantify how closely lexel
sampling maps to the desired sampling pattern in pixel space. Given such optimal-
ity criteria, we then delve into theoretical analyses of various cases, identifying in
particular the setups for which ideal shadow quality is achievable.

Finally, we present an algorithm for the general flatland configuration. This
algorithm proceeds in two parts:

1. deciding the optimal angle for a single light frustum – we seek an angle
of the lexel plane that will minimize the developed metrics and thereby reduce
perspective aliasing. Using an initial rendering pass, we can parameterize the
error measures by angular offset. This is done by explicitly writing down a
relation that re-maps lexels to rotated lexels. We can then solve for the optimal
angle offset using standard calculus techniques.

2. splitting the light frustum – we greedily partition the light hull of interest
into smaller light frusta, each with its own shadow map, and allocate reso-
lutional resources so as to minimize the sum total of the error metric over
the multiple frusta. The splitting of the light frustum allows the algorithm to
isolate regions requiring local lexel plane or lexel resolution change. This facil-
itates further reductions in perspective aliasing but also addresses projection
aliasing.



Chapter 2

Defining Optimality and
Analyzing Cases

To establish the framework for quantifying the effectiveness of various shadow map-
ping algorithms, we now turn to formalizing the intuitions presented earlier. From
this vantage point we will be able to deduce the optimality of certain shadow map-
ping setups and faultiness of others.

2.1 Metrics

Here we make concrete the idea of optimality. We start from the intuitive idea
that what is really sought is that the sampling done in the lexel domain match the
sampling rate required in pixel space. We desire this rate match over the entire pixel
space of interest, Ω.

Ideally, for shadow mapping purposes, Ω would be the set of pixels correspond-
ing (in world space) to the border between geometry mutually visible by the light
and view camera (i.e., those portions of the world that see no shadow) and geometry
seen only by the viewer (i.e. those in shadow). Given sufficient sampling over such
a set, we are guaranteed that shadow determination can proceed without under-
sampling artifacts. However, knowledge of such a set would mean this shadowing
problem is already solved. Therefore, Ω is instead chosen to be the set of pixels
corresponding to world points visible to the view camera. These are the points
for which we care (without further knowledge) about shadowing determination. Ω
could be extended to include pixels for which no geometry is seen. However, limiting
the size of Ω can only help reduce the aliasing problem because no lexels need be
devoted to irrelevant regions of the scene.

13
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The pixel space may be treated both as discrete or continuous. In the discrete
setting, Ω is the set of pixels for which geometry is seen and hence for which lexel
data is available. In the continuous context, Ω represents the union of pixel intervals
for which geometry is seen.

2.1.1 Developing Appropriate Measures

Because our analysis will focus on the flatland implications of lexel angle choice,
our metrics will be developed over one-dimensional lexel and pixel spaces. For each
pixel, the quantity of interest will be dp

dl
, where p is in units of pixels and l is in

units of lexels. This derivative (evaluated at each pixel location) is a measure of the
“badness” at that pixel. A large value means that moving one unit step over to the
next lexel sample will incur a large jump in the pixel value. That translates to the
lexel sample covering a large portion in the pixel space. A small value for dp

dl
implies

that a couple lexel samples correspond to a single pixel and therefore supersampling
of depth tests can be performed at the corresponding pixel. This measure of badness
suggests a couple natural choices for metrics. A discrete and continuous version of
each is presented here.

1. The L1 metric1. ∑
p∈Ω

∣∣∣∣dp

dl

∣∣∣∣ or

∫
p∈Ω

∣∣∣∣dp

dl

∣∣∣∣ dp

Since changing the lexel plane orientation does not affect whether pixels see
geometry, |Ω| is constant. This means that minimizing this measure of badness
for the entire image is equivalent to finding the lexel plane orientation that
minimizes the average pixel badness dp

dl
.

2. The L2 metric. ∑
p∈Ω

(
dp

dl

)2

or

∫
p∈Ω

(
dp

dl

)2

dp

As before, |Ω| is constant with regard to changes in lexel plane orientation, so
minimizing this measure can be interpreted as minimizing the second moment
of dp

dl
. Intuitively, this measure captures some notion of concentration around

the mean. Therefore, under this metric shadow quality is less likely to deviate
from the average quality. This average may or may not be worse than the
average achieved by use of the L1 metric.

1In the continuous version, we can meaningfully define an integral because we can simply remove
from Ω the finite number of points p (measure zero set) such that the quantity is discontinuous.
We know there are only a finite number because there are only a finite number of polygons and
within each polygon dp

dl is continuous and has the same sign
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3. The L∞ metric.

max
p∈Ω

∣∣∣∣dp

dl

∣∣∣∣
Minimizing this measure means that we seek the lexel plane angle that ensures
the worst pixel badness is as small as possible. This will have the tendency of
pushing the dp

dl
toward being constant.

The choice of the metric may very well depend on the application and the
desired shadow quality guarantee required. It may be that the worst shadow qual-
ity pixels are the most egregious and jarring. Therefore the L∞ measure may be
desirable. However, improving the worst pixels may come at the price of sacrific-
ing the overall quality of the other pixels. Ensuring that most pixels have good
shadow quality may prove more important than making the couple worst pixels bet-
ter. Therefore the L1 and L2 measures may arguably be better choices in certain
settings.

For the algorithm we present, the L1 and L2 measures will be used instead of
the L∞ option because they are differentiable with respect to lexel plane angle (well,
the absolute value in the L1 measure will be able to be removed without ill-effects
for our purpose; it is the max operator that causes problems with differentiability
in the L∞ version).

2.1.2 Continuous versus Discrete Pixel Domain

We first turn to analyzing the behavior of the continuous metrics. The continuous
variants are easier to work with because they are resolution independent whereas
the discrete measures do depend on the pixel grid resolution.

Interestingly, the continuous metrics will all choose (if possible) the lexel plane
angle such that dp

dl
is constant everywhere. For most scenes of interest this will not

be possible however, so the continuous metrics will make tradeoffs according to the
intuitions described above (choosing non-uniformity in the dp

dl
so as to minimize the

mean or variance).

That a constant dp
dl

is in fact optimal for any given setup can be seen as follows.
A basic result from variational calculus is that given:∫

f(x)dx = k

for some constant k, then:

min
f

∫
fn(x)dx
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for integer n ≥ 2 is given by choosing f such that it is constant everywhere. Let us
now interpret this result in the context of our badness measures.∫

p∈Ω

dp = k

for some constant k which is just the size of Ω.∫
p∈Ω

dp =

∫
p∈Ω

dp

dl

dl

dp
dp

=

∫
l∈Ω′

dp

dl
dl

= k

where Ω′ is the set of l corresponding to each p ∈ Ω. Now we look at manipulating
the L1 metric: ∫

p∈Ω

dp

dl
dp =

∫
p∈Ω

dp

dl

(
dp

dl

dl

dp

)
dp

=

∫
l∈Ω′

(
dp

dl

)2

dl

Likewise, for the L2 norm we have:∫
p∈Ω

(
dp

dl

)2

dp =

∫
p∈Ω

(
dp

dl

)2(
dp

dl

dl

dp

)
dp

=

∫
l∈Ω′

(
dp

dl

)3

dl

These imply that the optimal angle is that which makes dp
dl

constant.

In actual implementation, the pixel space is discrete and the measures are
therefore resolution dependent. The continuous viewpoint is instructive nonetheless
because high resolution renderings will tend to have extrema that behave similarly.
In the limit that resolutions approach infinity the discrete linearizations look like
their continuous analogues.

2.1.3 Computing the Measures Efficiently

Polygon rasterization is efficient because each pixel’s relevant information can be
computed through interpolation. Here, we likewise seek a method for computing the
required dp

dl
quantities at each pixel through interpolation or through application of
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a simple function of interpolants. This will allow us to store each derivative per pixel
into a buffer that can be read back at some later time. Let us order the coordinates
for 2D such that [1, 0, 0]t is the vector representing one unit step in pixel space.
Then:

VtPtM
−1
t MsP

−1
s V −1

s

 1
0
0

 =

 d(lq)
dp

–
dq
dp


d(lq)
dp

and dq
dp

are constant across a raster span. The product rule for derivatives
gives us:

d(lq)

dp
=

dl

dp
q + l

dq

dp

⇒ dl

dp
=

d(lq)
dp
− l dq

dp

q

Note that l and q are both efficiently computable by linear rational or linear in-
terpolation. Therefore, dl

dp
is efficiently computable at each pixel. dp

dl
is just the

inverse.

2.2 Theoretical Analysis of Special Cases

Now that metrics have been put forth for quantitatively measuring the “badness”
incurred by various shadow mapping setups, we can reason theoretically about the
optimality of certain configurations or inevitable problems inherent in others.

2.2.1 Single Plane Geometry Case

Suppose now that our world geometry consists only of a single plane on which we
really care about shadow quality (perhaps most shadows fall upon a flat floor). Then
we can achieve an optimal configuration for the shadow map sampling. Figure 2.1
shows how the angle is chosen. In 2D, the intersection point between the world
plane (line) and viewer plane is found. Then the lexel plane is chosen so as to be
parallel to the line connecting this intersection point and the light.

Theorem 1 Orienting the lexel plane in this way provides a constant dp
dl

.

Proof: Let us denote the intersection between the world plane and the view plane
as q. Consistent with the notation presented in section A.2, we will denote the
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Figure 2.1: Choosing the optimal angle for single plane geometry

matrices associated with the projection of the world onto the shadow map texture
with the subscript t. Those associated with the projection of the world onto the pixel
screen will have the subscript s. VtPtM

−1
t is the mapping such that after division

by the homogeneous coordinate wt, world space points are mapped into the light’s
lexel space (recall the decomposition of the projective mapping described in section
A.2). Likewise, VsPsM

−1
s followed by division with ws maps world space points

into the view camera’s pixel space. Both these transformations, being projective
transforms, map lines to lines [3]. Let U be the line that is the image of the world
plane in the light’s post-projective space. We seek to show: PsM

−1
s (PtM

−1
t )−1

restricted to U fixes the homogeneous coordinate and therefore represents an affine
mapping from U in the light’s post-projective space to the view camera’s post-
projective space. We have dropped the Vs and Vt because these represent affine
transforms. Therefore, proving PsM

−1
s (PtM

−1
t )−1 affine implies movements in lexel

space correspond linearly to movements in pixel space. Consequently, dp
dl

would be
constant when we restrict our attention to the single world plane.

To show PsM
−1
s (PtM

−1
t )−1 fixes the homogeneous coordinate when restricted

to U , we concentrate our attention on the line’s point at infinity. Let qt be the image
of q under the transform PtM

−1
t . Let qs be the image of q under the transform

PsM
−1
s . Note that by construction, q lies on both the view plane of the light and
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view plane of the camera. Therefore, since PtM
−1
t and PsM

−1
s pull the light and

view planes respectively to infinity, the homogeneous coordinates of qt and qs must
both be zero.

The mapping PsM
−1
s (PtM

−1
t )−1 restricted to U can be represented by a 3x3

real matrix because the unrestricted projective mapping can be. Let [a, b, c] be the
last row of this matrix. Since U is a line, we can write its point at infinity as
[λ, mλ, 0]t or [0, λ, 0] for nonzero λ where m is the slope of the line. The second case
can be treated as the first in which m is zero by symmetry under exchange of the
first two coordinates. Therefore, without loss of generality, we will consider only the
first formulation of U as a line. To ensure that the transform does indeed map qt,
a point at infinity, to a point at infinity, we require of [a,b,c]:

[a b c]

 λ
mλ
0

 = 0

This implies
λ(a + bm) = 0

Therefore, any point [λ, mλ + k, 1] on the line U (where m and k are constant) will
map to a point with homogeneous coordinate given by:

[a b c]

 λ
mλ + k

1

 = λ(a + bm) + bk + c

= bk + c

The value bk + c is constant, so the matrix can be normalized so that bk + c is one
and no division by the homogeneous coordinate is necessary to get post-projective
space coordinates.

Corollary 2 Choosing the lexel plane angle as such is optimal2.

Proof: As demonstrated in section 2.1.2, the angle that makes dp
dl

constant every-
where minimizes the metric’s integral. It is therefore the best choice according to
the metric.

2.2.2 Miner’s Headlamp

It has been commonly observed that for the case in which the light is positioned
directly above the view camera (as a miner’s lamp would be), close to optimal

2optimal with respect to the continuous metrics
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Figure 2.2: Directional light and non-planar geometry in the viewer’s post-projective
space.
No angling of the lexel plane in post-projective space can accommodate the discon-
tinuous sampling density in the lexel domain induced by the uniform pixel samples.

sampling is achieved when the lexel plane is set parallel to the viewer’s near plane.
If scene geometry consists of only a single plane, then theorem 1 tells us a lexel
plane parallel to the view plane is exactly optimal. In fact, this optimal angle holds
for any position of the light on the view plane. At this setting the badness measure
dp
dl

at each pixel is constant. Portions of the scene that are sampled sparsely from
the viewer’s perspective are likewise sparsely sampled from the light’s perspective
and regions densely sampled by the viewer are densely sampled by the light in exact
proportion.

If the scene is more complex it turns out that dp
dl

will be constant across poly-
gons. However, the value will differ for polygons of different orientations. Therefore,
it is likely non-uniformity will allow for more optimal sampling by devoting more
samples toward those planes that correspond to pixels that otherwise would have
large dp

dl
.

Figure 2.2 paints an intuitive picture of why the sampling differs for different
planes. The example setup is drawn in the view camera’s post-projective space. In
this space, the view plane is pulled to infinity and both lighting and pixel sampling
become directional. Although the pixel samples are taken at uniformly spaced in-
tervals, they map to lexel samples that are not uniformly spaced by some constant
factor. In this scenario it would be desirable to devote more lexels to the planes
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more directly facing the viewer.

Proposition 3 For arbitrary world geometry, constant dp
dl

on each polygon can be
guaranteed if and only if the light is positioned in the view plane perpendicular to
the view direction. Furthermore, the light direction must be oriented parallel to the
view direction.

The proof of this proposition is provided in the appendix B.1. It is interesting
to note that for arbitrary scene geometry, positioning the light in the view plane and
setting the film plane parallel is the only way to guarantee constant dp

dl
over each

polygon and therefore if polygons of different orientations exist within the scene, it
will be impossible to get a constant dp

dl
over the entire scene (unless the light position

is the same as the view camera position).

Figure 2.2 paints a rather extreme scenario in which the directional light is
perpendicular (or nearly perpendicular) to the view direction. This shows pictori-
ally how large sampling discontinuities in the lexel domain for planes of different
orientations may arise. As the directional light is changed so that it approaches be-
ing parallel with the view direction, the disparities between sampling rates among
polygons shrinks to zero. This corresponds to moving the light located on the view
plane (starting infinitely far from the view camera) closer and closer to the view
camera. At the view camera location, sampling matches exactly. Therefore near the
view camera, we can get close to optimal sampling for arbitrary geometry by setting
the lexel plane parallel to the view plane.

That we can get close to optimal sampling in this miner’s headlamp case for
arbitrary geometry may be somewhat uninteresting because this is exactly the case
in which the viewer sees very little shadow. A light positioned near the view camera
casts shadows behind the visible objects.

2.2.3 Post-projective Rendering as Choosing Lexel Planes

To make meaningful comparisons with previous work, we now reformulate the per-
spective shadow mapping work into the lexel plane angle context. We then follow
with some theoretical analysis and comparisons against the known ideal setups.

Perspective shadow maps differ from the normal approach to shadow mapping
only in that it calls for setting up the shadow map rendering in the view camera’s
post-projective space, observing that sampling with respect to the view camera
should likely be more uniform.

To get a sense of how close to optimal perspective shadow maps usually get, it
would be helpful to convert setup of the light frustum in post-projective space into
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Figure 2.3: Dependence of lexel angle on near plane in post-projective space

a lexel plane angle in world space. Intuitively, once the light frustum is set up in
post-projective space it can be mapped back to world space by an inverse-projective
transform to yield some angle setting of the lexel plane. However, the heuristic of
setting up a light frustum as “normal” in post-projective space is not completely
well defined.

The translation to a lexel plane angle turns out to be somewhat ambiguous. For
different distance offsets of the near plane in post-projective space, we get different
lexel plane angles in world space. Figure 2.3 gives a flatland visualization of this
phenomenon. While the near and far planes are parallel in post-projective space,
they fail to remain so after the inverse-projective mapping back to world space. In
post-projective space, the near and far planes, being parallel, intersect at the line at
infinity. This line at infinity also happens to be the line on which the view camera
is located since this is the view camera’s post-projective space. Therefore, when
mapping back to world space, this line is brought to the world’s view camera plane.
Consequently, the near and far light planes must also intersect on this view camera
plane for any light near plane chosen.

The authors note that for perspective shadow maps, the best results are
achieved when the light’s near plane is pushed as far forward as possible [9]. While
in standard shadow mapping, pushing up the near plane serves to increase depth
precision, in the perspective setting it serves a dual purpose. As with normal shadow
maps, decreasing the range of depths encountered aids precision computation. But,
as noted above, choosing a different near plane also effectively changes the lexel plane
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angle as seen from world space and hence changes the geometry depth sampling dis-
tributions. So the observed shadow quality improvements obtained by moving the
light’s near plane are a combination of these two effects. Since the range of angles
spanned by the possible near planes can be quite large, the output quality from
perspective shadow maps can depend greatly on how close relevant scene geometry
gets to the light source in post-projective space. By recognizing the angle of the
lexel plane as the adjustable degree of freedom in shadow mapping, we can avoid
such dependencies and choose the angle based on the desired sampling distribution.

An additional advantage of taking the lexel plane orientation interpretation
is that handling post-projective space rendering involves dealing with some special
cases. For instance, when the light frustum includes objects located behind the
view plane, the projective mapping yields a light frustum that straddles both sides
of the infinity plane. Such complexities make for tricky implementations, so the
authors suggest simply pulling the view plane back for shadow map generation until
the light frustum of interest is completely in front of the view plane [9]. In the
extreme when the view plane must be pulled back to infinity, this action causes
perspective shadow maps to converge to the behavior of normal shadow maps. Any
such required pulling back of the view plane, however, does introduce some amount
of perspective aliasing. In contrast, choosing a lexel plane angle is something that
can be done once and for all in world space without regard for potential wrapping
around infinity due to projective mappings.

Ideal Performance

When scene geometry consists of just a single plane and the light is positioned on
the view plane, perspective shadow maps get the lexel plane settings right. These
are the cases in which after projective transform, the lighting is directional. This
corresponds in world space to point lights on the view plane or directional light
parallel to the view plane.

Because in post-projective space such lighting is directional, it does not mat-
ter what angle the lexel plane is set at. Rotation of the plane does not affect
the sampling density because uniformly spaced rays stay uniformly spaced. Direc-
tional lighting in which the light rays are uniformly spaced will hit a line within the
canonical cube with linearly separated samples. Likewise, because geometry is then
orthographically projected onto the image plane, those linear samples stay linearly
separated in pixel space. Consequently, constant sampling density is achievable.
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Failure Cases

Consider now the case in which lighting is again directional in post-projective space
but this time the scene possesses planes with different orientations. Figure 2.2
shows that although sampling for each plane individually is constant, between planes
sampling can be quite uneven. However, no matter what angle of the film plane is
chosen in post-projective space, all lexel samples will fall such that each polygon
individually gets constant sampling density. However, setting the lexel plane parallel
to the view plane in world space is often sub-optimal for arbitrary geometry because
we really want dp

dl
to be as constant as possible over the entire scene, not each polygon

separately. Intuitively, it would be advantageous to angle the lexel plane such that
the dp

dl
differed minimally between world geometry with different orietations.

For point light sources that remain point light sources in post-projective space,
the perspective shadow map method can give rather arbitrary results as well. Con-
sider a scenario as in figure 2.2 (shown in post-projective space) in which the di-
rectional light is replaced with a point light above the view frustum. Perspective
shadow maps generate a lexel plane in post-projective space that is close to horizon-
tal. This translates to a lexel plane in world space that is likewise near horizontal.
But here it is desirable to tilt the lexel plane such that more samples are devoted
to the polygons more directly facing the viewer. This shows that while perspective
shadow maps may empirically perform better than standard shadow maps in a num-
ber of test cases, the heuristic does not necessarily tend to an optimal improvement.



Chapter 3

Revising the Shadow Map
Algorithm

We divide the presentation of our algorithm into two parts. The first part addresses
the issue of choosing an optimal lexel plane angle for a particular given light frustum.
To do so, we rewrite the metrics to minimize as a function of the lexel plane angle
and solve for the minimum. Choosing a perspective optimal lexel plane angle tackles
the perspective aliasing problem because it devotes more lexels to those areas more
densely sampled by the view camera.

While determining an angle that best matches the sampling distribution re-
quired provides beneficial results, it is not a complete solution to the aliasing prob-
lem. There are setups for which no setting of the lexel plane angle will yield satisfac-
tory results. In choosing an optimal lexel plane angle, an algorithm must contend
with a number of competing effects. Both lost lexels and projection aliasing can
greatly bias the choice of angle settled upon. Lost lexels refers to the situation in
which part of the light frustum has no geometry of interest and therefore all lexels
devoted to covering it do not contribute to the final image rendering step. An algo-
rithm seeking to minimize the loss of lexel samples will skew the angle of the lexel
plane away from such loss. Projection aliasing occurs when a polygon decently sam-
pled by the view camera is oriented so that it points toward the light. In this setting,
the pixel samples along that piece of geometry fit within a very small footprint in the
lexel domain. To fit a sufficient number of lexel samples within that footprint, the
only resort may be to greatly alter the lexel plane angle so that adequate sampling
occurs on that plane to the detriment of other portions of the scene.

Lost lexels and projective aliasing are tricky to handle by lexel plane angle
changes because they really require abrupt local resolutional changes to accommo-
date the sampling needs of the scene. The second part of our proposed algorithm

25
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Figure 3.1: Lost lexels – missing geometry causes lexel plane to no longer focus
samples near view camera

which partitions the light frustum into multiple smaller frusta is designed to remedy
this situation. The design is meant to allow segregating lost lexel and projection
aliasing regions so that such frusta may be treated separately. This gives our algo-
rithm the mobility of making a prescribed number of local sampling changes so as
to maximize the shadow quality in the end.

In both portions of the algorithm, a single initial low resolution rendering of the
geometry from the perspective of the view camera is used to provide the necessary
information for optimal angle and light frusta determination. Instead of storing the
normal color information in the image created, the color channels are used to store
lexel locations l and derivatives dp

dl
for each pixel location. These values, of course,

must be relative to some initial lexel plane angle. This initial angle can be chosen
arbitrarily as long as it is valid (for instance, the naive half-angle approach used in
normal shadow maps that sets the light direction to bisect the angular sweep of the
light frustum).

3.1 Determining the Optimal Angle

Our ultimate aim here is to re-write the metrics decided upon in section 2.1 in terms
of a single angle parameter so that we can use the usual rules of calculus to find the
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angle that gives the minimum sampling error. We would like to reformulate:∑
p∈Ω

∣∣∣∣dp

dl

∣∣∣∣ or
∑
p∈Ω

(
dp

dl

)2

Suppose we have the per pixel dp
dl

generated for a particular initial setting of the lexel

plane. We would like to determine the dp
dl′

that would be generated if rotation of the
light had been changed to yield new lexel coordinates l′ instead of l associated with
each pixel. If we can determine explicitly the mapping from l to l′ in terms of the
rotation applied and compute dl

dl′
for each lexel l, then the chain rule for derivatives

gives us:
dp

dl′
=

dp

dl

dl

dl′

This is re-mapping of lexels to rotated lexels is essential to our algorithm because dp
dl

is some given value for each pixel that is constant with respect to angle changes; dl
dl′

for each pixel is a quantity depending only on the angular change. Therefore, if the
re-mapping function could be written out explicitly, this would enable formulating
the error metrics in terms of the single angular parameter. Fortunately in 2D, this
re-mapping is easy enough to describe. The re-mapping transformation is given by:

Pl′R
−1
x P−1

l

where Pl is the original projective transform that yielded the l coordinates, Rx is
the rotation of the light’s axes by amount x, and Pl′ is the projection matrix with
the new top and bottom extents giving us the l′ coordinates. Notice that once Rx is
chosen, Pl′ is completely determined by the extents of the samples the light frustum
needs to cover. Let θt and θb represent the angles (with respect to the original light’s
axes) corresponding to the top and bottom extents of the near plane. Then for some
change in the lexel plane angle x, the new angles of extents are given by θt − x and
θb − x.

This allows us to write for some fixed pi ∈ Ω and hence fixed li:(
dl

dl′

)
i

(x) =
cos θt cos θb sec(θt − x) sec(θb − x)(2 cos x + sinx (tan θt + li tan θt + tan θb − li tan θb))

2

4

For the L1 norm we then seek to solve1

d

dx

|Ω|∑
i=1

(
dp

dl

∣∣∣∣
pi

(
dl

dl′

)
i

(x)

)
= 0

1We have dropped the absolute value sign since we can choose to perform rasterization such
that all the derivatives point in the same direction (say positive for convenience). Therefore, since
we only care about the extrema points, these solutions are left unchanged
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The key observation to make here is that only the
(

dl
dl′

)
i
(x) depend on the

angular change x. The roots to this equation can then be solved for and written in
closed form. Mathematica gives eight critical points, corresponding to the possible
rotations yielding the desired overall minimum of the error metric. Of these eight
choices, we can rule out those that yield invalid angles and compute the errors on
the rest in constant time to find the real minimum.

It could be argued that perhaps all the extrema fall outside the range of valid
angles of the lexel plane. In practice, we have never observed a case in which
this happens. Furthermore, there is good reason to believe that for nondegenerate
cases we will always find at least a valid local minimum. As the angle of the lexel
plane approaches the invalid angles (i.e., as it is slanted to shoot off to infinity and
therefore have infinite length), the badness measures in turn tend to infinity. Yet for
some valid angle on scenes of interest (say, the angle determined by normal shadow
maps), the error metric will take on a finite value. Therefore, since the error metric
function is continuous, there must exist a local minimum. If no finite measure exists
within the range of valid angles, then the minimum might as well be taken to be
the values given at the boundary.

For the L2 norm, we seek a solution x to:

d

dx

|Ω|∑
i=1

(
dp

dl

∣∣∣∣
pi

(
dl

dl′

)
i

(x)

)2

= 0

The solution to this expression is too unwieldly to write in closed form. However, we
can turn to Newton’s Method for finding a root. Falling back to Newton’s Method
may be slightly disturbing because only quadratic equations are guaranteed to not
cause chaotic behavior [6]. However, the function here has experimentally proved
itself relatively well behaved. Over all the experiments and various initial guesses,
Newton’s Method tended to converge to within one hundredth of a degree within
only five or six iterations. A set of randomly generated initial guesses provides a
decent set of values over which to check for valid minima. Even simply restarting
only after getting convergence to an invalid angle proved to provide the desired
minima in most cases2. For a discussion on quantifying the size of a local region in
which superconvergence is guaranteed, the reader is referred to [6].

For a single lexel plane, we can find the optimal angle with the approach
described in algorithm listing 1. For this algorithm, we first choose some initial
setting of the lexel plane (can be any heuristic that gives a valid angle (an angle for
which the projection matrix makes sense). We then render from the view camera’s
perspective in low resolution and save the data depth, l, and dp

dl
.

2an initial guess of zero was used with some additive constant applied each successive try
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Algorithm 1 angle GetOptimalAngle(initial angle, { (depth, l, dp
dl

) })
1: {k is an adjustable parameter for number of potentially different solutions to

look for}
2: for i = 0 to k do
3: guess ← i · RandomOffset()
4: result[i] ← invalid angle
5: while result[i] is invalid do
6: result[i] ← initial angle + NewtonSolution(guess, { (depth, l, dp

dl
) })

7: guess ← guess + RandomOffset()
8: end while
9: end for

10: return result[i] that gives the least error

3.2 Dividing Up the Light Frustum

In this part of the algorithm, we generalize the problem setup. Now we are given a
light frustum budget (a maximum number of light frusta we may use) and a lexel
budget (the total number of lexels allowed for all light frusta). The question is now
how to divide up the lit scene among the smaller light frusta and allocate the lexels
so that we achieve the best shadow quality in the finally rendered image.

We render the scene from the perspective of the view camera in low resolution
as before to get initial depth, l, and dp

dl
data from which to make informed deci-

sions. We then split the light coverage into a set of smaller frusta, starting with
some predefined maximum MAX LIGHT FRUSTA. Until we are within our light
frusta budget, we greedily merge adjacent frusta such that the merging process and
reallocation of lexels to each frustum yields the smallest badness increase according
to our chosen metric. Additional frusta can only help so once the frustum budget
is reached it is not necessary to perform any further merges. Further merges may
take place only if it is judged that the marginal gain from having one more frustum
is too small to justify the computation cost of generating another shadow map. The
optimal angle for each individual frustum is determined as before using the lexel
remapping method. It is important to note that the inputs l and dp

dl
must undergo

a linear transformation to make sense in the context of the smaller frusta because
the l value changes meaning. The l coordinate must be rewritten to be a coordinate
with respect to the smaller frustum instead of the original single light frustum used
for the initial pass. The dp

dl
value must be multiplied by the size ratio of this smaller

frustum near plane to the initial single frustum near plane.

Allocation and reallocation of lexels to each frusta is decided by use of lagrange
multipliers. In order to meaningfully compare the errors between frusta, we need
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Algorithm 2 void SetOptimalAnglesAndLexels(void)

1: num frusta = MAX LIGHT FRUSTA
2: initial angle ← SetInitialAngle()
3: texture map ← low-resolution rendering saving depth, l, dp

dl

4: for i = 0 to MAX LIGHT FRUSTA-1 do
5: {evenly partition by angle the light view into MAX LIGHT FRUSTA frusta}
6: tbextents[i] ← bottom extent of ith light frustum
7: tbextents[i + 1] ← top extent of ith light frustum
8: frustum data ← ∅
9: for all texture map entries with l within the extents of light frustum i do

10: frustum data ← frustum data
⋃
{depth, rescaled l, rescaled dp

dl
}

11: end for
12: angle[i] ← RemapZero(frustum data)
13: error[i] ← error incurred by using inital angle + angle[i] as lexel plane angle
14: end for
15: {Perform merges on adjacent light frusta greedily until we get within budget}
16: while num frusta >LIGHT FRUSTA BUDGET do
17: for i = 0 to num frusta− 2 do
18: for all texture map entries with l within the extents of light frustum i and

i + 1 do
19: frustum data ← frustum data

⋃
{depth, rescaled l, rescaled dp

dl
}

20: end for
21: temp angle[i] ← GetOptimalAngle(initial angle, frustum data)
22: temp error[i] ← error incurred by using inital angle + angle[i] as lexel

plane angle
23: end for
24: for i = 0 to num frusta− 2 do
25: res set[i] = ComputeFrustaResolutions(i, error, temp error[i])
26: res err[i] = error from frusta resolution settings according to res set[i]
27: end for
28: ind ← argmini res err[i]
29: shift tbextents, error, and angle down by one after element ind
30: error[ind] ← temp error[ind]
31: angle[ind] ← temp angle[ind]
32: lexel frusta resolutions ← res set[ind]
33: num frusta ← num frusta− 1
34: end while
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our metric values to have shared units. Therefore we implicitly multiply each dp
dl

by a 1 lexel sized neighborhood. This converts dp
dl

to a measure of footprint size
in terms of pixels. The decision to use size 1 neighborhoods is arbitrary and any
constant size will do (the minimum is unchanged by constant scales of each value).
Let e1, . . . , en be the errors from each frustum where each ei has been scaled such
that the lexel range for that frustum is unit length. This means that for the L1

metric we seek to minimize:
e1

x1

+ · · ·+ en

xn

where xi is the lexel resolution for frustum i. In the L2 formulation, we have:

e1

x2
1

+ · · ·+ en

x2
n

This minimization is subject to the constraint that:

x1 + · · ·+ xn = L

where L is our lexel budget. Error values are computed with real number lexel allo-
cations. Only at the end is rounding performed. If the lexel budget is a strict upper
limit, each allocation can be rounded down to an integer value. Then any remaining
lexels can be allocated according to a water-filling bit allocation algorithm [5].
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Chapter 4

Results and Discussion

We have presented a framework for quantitatively understanding the relation be-
tween shadow mapping’s remaining degree of freedom and its implications for mit-
igating the undersampling problem encountered during image rendering. We have
also introduced a method for getting optimal sampling according to developed met-
rics.

4.1 Implementation Results

In this section we present details on running the revised shadow mapping algorithms
and put forth some experimental results.

4.1.1 The Initial Rendering Pass

We first consider the initial rendering pass used by the algorithm. Throughout
it has been noted that a low resolution rendering will be used (perhaps feeding
in coarse geometry as well for a fast approximation). However, we have yet to
specify an exact number of pixels. The resolution used determines how closely the
discrete metrics used in the algorithm approximate the continuous ones (or the high
resolution discrete metric implied by the resolution of the final image). The required
number of samples depends largely on the scene. Scenes with many polygons at
various spatial and angular settings may require more samples than scenes with few
abrupt changes. To determine a suitable number of pixels, a variety of scenes were
rendered at high resolution (1000 pixels). Each scene was subsequently rendered at
lower and lower resolutions (100, 50, 25, 10, 5) and an optimal angle was determined
for each using both the L1 and L2 versions of our algorithm. For each low resolution
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Figure 4.1: Error added by low resolution approximation to metrics

rendering’s optimal angle, we found the percent increase in error that would result
had that angle been used in the high resolution context. In this case, for the L1

metric, error refers to the average size of the lexel footprint in the pixel domain.
For the L2 metric, error is taken to be the mean footprint size plus the standard
deviation (a reasonable quantity to look at because the L2 metric is meant to provide
concentration around the mean so that few pixels will have poor shadowing). The
experiments show that for many scene setups, taking only ten samples does a decent
job. Most of the scene configurations gain less than five percent additional error
when using angles determined from ten samples. That means a footprint would
have to cover twenty pixels before a full additional pixel were covered due to this
low resolution approximation. Figure 4.1 shows the numbers from one of the typical
scenes.

4.1.2 Splitting the Light Frustum

For the scenes tested, the results of splitting the light frustum into smaller hulls,
each with its own shadow map, were mixed. For a range of scenes, the light frustum
partitioning process provided about 1.3 times improvement. As discussed later, this
may or may not be significant depending on the cost of looping through the geometry.
However, for a certain set of scenes with lots of projective aliasing (because polygons
point toward the light), the benefits are much larger. A number of cases showed
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2-3 times improvement after performing the light hull partitioning. In each scenario
the benefit derived from successive splits after the first diminished quite rapidly.
Undoubtedly, scenes can be constructed to greatly benefit from numerous splits;
however, our experiments suggest that two or three partitions usually achieve most
of the noticeable gain. In the examples run below, we settled upon a low resolution
pass of 100 pixels so that the initial individual frusta in the light hull partitioning
algorithm would typically have enough lexel samples to make reasonable decisions
about the optimal angle for their slice of the hull.

4.1.3 Case by Case Examination

We now present some experimental results from each of the shadow mapping variants
on specific cases. These examples have been constructed in flatland and serve to
highlight some of the behavioral similarities and differences between the approaches.
The angles for Perspective Shadow Maps are determined by the angle of the near
planes when pushed as far forward as possible. Table values:

Angle is measured in degrees. The angle refers to counterclockwise rotation with
0 meaning a vertical lexel plane.

Worst is measured in pixels. The value corresponds to the size of the largest
footprint of a lexel when mapped into pixel space (maximum size is taken
over lexels which are visited in constructing the pixel image). The smaller the
value, the better according to the L∞ metric.

Average is measured in pixels. This represents the average lexel footprint size in
pixel space.

Mean +σ is measured in pixels. This is the size of the lexel footprint one standard
deviation from the mean (in the worse direction).

Single Plane Geometry

In the first case, we have a scene consisting only of a single plane of interest. Such
cases may arise in architectural walkthroughs or games in which shadows on a floor
are the most important. In this particular setup we have tried to present a “typical”
example of a floor with a light shining from above. Even when the world geome-
try is simply a single plane, perspective shadow maps gives a range of lexel plane
angles that may not include the optimal. Irrespective of whether the point light is
positioned in the front or back of the view frustum, perspective shadow mapping
chooses a near plane corresponding a lexel plane oriented at about 91 degrees. This
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is partly a consequence of the decision to push the near plane in post-projective
space as close to the geometry as possible. The angle chosen in post-projective
space is about 90 degrees and therefore intersects the plane at infinity close to the
viewer’s viewpoint pulled out to infinity. Therefore, when mapped back to world
space, the lexel plane will extend to intersect the view plane around the viewer’s
viewpoint. Since the near plane was pushed as far forward as possible, this trans-
lates to a choice of about 90 degrees in world space as well. If instead some constant
near value in post-projective space were chosen, as the light is pulled upward, the
lexel angle in world space would tend toward zero, which is the optimal for the point
light (because it gives more samples to the geometry closer to the viewer). Only at
infinity, when the light becomes directional does it make sense to orient the lexel
plane at 90 degrees (of course, at that point, the angle doesn’t really matter as long
as it is valid).

Normal shadow maps use the naive half-angle approach which happens to be
better than the perspective shadow mapping value for this particular light position
but performs poorer as the light is pushed to the back of the view frustum.

Angle Worst Average Mean+σ

Our Method (both) 9 0.975 0.960 0.968
Perspective SM 91 4.33 1.88 3.10
Normal SM 51 2.08 1.17 1.65

Simple Geometry

In this scene the view camera looks at a simple setup with lighting from above the
view camera. This arrangement demonstrates that although perspective shadow
maps may give some noticeable improvement overall, there are certainly a number
of cases where it does poorer than the naive approach. In this case, the naive half-
angle approach of just making the light direction bisect the light frustum gives an
angle in the optimal range.

Angle Worst Average Mean+σ

Our Method (L1) 24.8 1.54 1.09 1.42
Our Method (L2) 29.2 1.54 1.10 1.41
Perspective SM 86.8 4.74 1.95 3.20
Normal SM 25.3 1.54 1.09 1.42



4.1. IMPLEMENTATION RESULTS 37

Light from Top

This is an example modeled after the second scenario presented in section 2.2.3.
A point light shines from on top of the scene’s geometry which includes one plane
facing the view camera. Both the perspective shadow maps and the normal version
do not devote enough lexel samples to this plane. Here we see that an arbitrary
amount of improvement is possible over the previous approaches. This particular
setup yields an approximately fifteen times improvement.

Angle Worst Average Mean+σ

Our Method (L1) 5.11 6.42 3.38 4.39
Our Method (L2) 5.13 6.42 3.38 4.36
Perspective SM 77.3 73.7 44.4 67.4
Normal SM 83.1 76.7 46.2 70.2

Projection Aliasing

This case exhibits the benefits of splitting the light frustum and performing lexel
allocation when projection aliasing exists. A piece of geometry is oriented so that it
points toward the light and faces the viewer flat on. In this case, over a two times
improvement is obtained with the partition.

Angle Worst Average Mean+σ Mean (two frusta)

Our Method (L1) 33.9 60.0 17.7 41.4 7.75
Perspective SM 67.7 72.7 22.1 50.5 –
Normal SM 83.7 82.5 25.3 57.5 –

4.1.4 Weighing Advantages and Disadvantages

Ultimately, with real-time rendering as our aim, the relative advantage or disadvan-
tage of our approach with respect to previous methods must be judged in terms of
the time required to obtain a certain level of shadow quality. Given some factor N
improvement provided by our algorithm (either in terms of average footprint size or
mean plus standard deviation), the previous methods can employ N times as many
resources to achieve the same resulting shadow quality.

The extra cost incurred by our method comes from performing an initial ren-
dering pass, running an optimal angle solver over the samples, and making multiple
passes for each shadow map frustum determined by light hull partitioning. This
must all be weighed against the cost suffered by previous algorithms rendering with
N times higher resolution shadow maps.
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Unfortunately, ultimate decision as to whether the proposed algorithm pro-
duces worthwhile gain must be deferred for later testing once versions operating in
three-dimensional scenes of interest are constructed. As of now, the inability to the-
oretically determine a probability distribution over all possibly encountered scenes,
nuances of hardware and driver timing, and complications of extrapolating to a
higher dimension render speculation about final performance very imprecise. The
system will simply have to be timed in a set of typical test cases once implemented
in full to give a real sense for relative performance.

4.2 Future Work

4.2.1 Generalizing to 3D

The natural next step is to generalize the algorithm to three dimensions. While
much of the framework and analysis follows through, the extra dimension adds a
couple complications.

Metrics

For 2D image and lexel planes it is less straightforward to settle upon the “right”
metric. It would be convenient simply to extend the metrics such that the derivatives
turn into directional derivatives for movements both horizontally and vertically in
the lexel space. For instance, the L2 metric might become:

∑
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[(
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where (u, v) are the texture coordinates and (x, y) are the pixel coordinates. The
i, j subscripts loop over the lexels in Ω′.

While this is a simple extension, the “geometric stretch” measure proposed
by Sander et. al. may be a more desirable measure [8]. Not only does it try
to minimize the area covered by a footprint in the pixel domain, it reduces the
amount the footprint stretches so that lexels will have more local effects on the
pixels. Geometric stretch is defined to be the trace of the metric tensor. The metric
tensor is the product of the Jacobian transpose and the Jacobian for our mapping
from lexel to pixel space. Equivalently, the geometric stretch is also the sum of the
squares of the Jacobian’s eigenvalues.
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Figure 4.2: Change of frustum extents with change of angle

Lexel Re-mapping

While in 2D the metrics could be parameterized in terms of angle with relative ease,
in 3D it becomes more tricky to analytically classify the extents of the frustum based
upon rotations in 3D. There are now three rotations to consider – pitch, yaw, and
roll. There exist algorithms for determining the minimal rectangle enclosing points
in a 2D plane, which implies a method for finding an optimal roll and light frustum
extents given a fixed pitch and yaw. However, categorizing how the results of such
an algorithm change based on changes in pitch and yaw is more complex.

The difficulty in determining the light frustum extents is that after a rotation
of yaw or pitch, the top, bottom, left, and right extents move under the rotation
to give a non-rectangular near plane (imagine the intersection of the rotated near
plane with the original convex hull defined by the old near plane extents). In fact
the dimensions of the new near plane can be quite skewed. Figure 4.2 shows that
for a set of points in the world that define a particular light hull of interest (chosen
to have a rectangular near plane in the initial setting for simplicity), rotation of the
light will lead the near plane’s intersection with that hull to be non-rectangular.
The projection matrices supported by graphics hardware presuppose a near plane
that is always rectangular (allowing a straightforward affine map between it and the
lexel or pixel grid). Therefore, to continue allowing an affine map to the grid, it
seems that having some lost lexels is inevitable.
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Writing down a good approximation to the optimal light hull extents after
rotation of the light’s axes such that the near plane is rectangular is essential to the
algorithm as developed in 2D. A poor approximation may find false minima that
can have little correlation with the right answer or provide minimal improvements
relative to the computational cost.

Light Hull Partitioning

The frusta merging process during lexel allocation also becomes more constrained.
Merges of frusta can no longer be done simply by taking adjacent frusta. Collapses
must follow some type of quad-tree rule so that in the end the remaining frusta are
rectangular. The lexel allocations to each individual shadow map also cannot be
added on the lexel level anymore either. Since shadow map textures must be rect-
angular, adding more lexels to a shadow map means adding entire rows or columns
of samples.

Newton’s Method

In a higher dimension, there is always a concern that Newton’s Method may not
converge to a solution nicely. The functions whose roots are solved for must be
chosen such that Newton’s Method will give reasonable results. Perhaps other ap-
proximations can be made to allow for a closed form approximate solution.

4.2.2 Running the Algorithm in a Different Projective Space

Bringing the algorithm into a different projective space may allow it to settle upon
angles that were invalid in the other space. Although from an implementation
standpoint the move to a different projective space may not be worth the effort, it
would be interesting to classify how much improvement might be extracted.
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Appendix A

Background Material

In this chapter, we shall first motivate our discussion of shadowing algorithms with
a brief overview of the rendering, or image creation, process. We will then turn our
attention to understanding the mathematics behind the texture mapping process.

A.1 Image Rendering

Computer graphics in essence is a study of light simulation. Given some representa-
tion of a three-dimensional world (perhaps as a soup of triangles or a set of algebraic
functions defining implicit surfaces), we want to render a flat image consistent with
what a person living in that world would see. Our model for a viewer’s eye is the
pinhole camera. Light from the world passes through the camera’s pinhole, and
forms an inverted image on the film plane located behind the hole. Because in a vir-
tual setup, locating the film plane behind the hole is an arbitrary decision (required
in real life only by physical limitations), in computer graphics it is customary to
move the film plane in front of pinhole to deal with non-inverted images. This film
plane, henceforth referred to as the near plane, can be overlayed with some finite
and discrete grid, often chosen so as to be in one-to-one correspondence with a grid
imposed by the output display (e.g., a computer monitor or LCD screen). Each
partition of the grid is referred to as a picture element, or pixel. Image rendering
then becomes the determination of what color to light each pixel.

A.1.1 Ray-Tracing

A natural approach to determining the color of a pixel is to pursue further the
analysis of what the physical behavior of light mandates. In the natural world, light
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Figure A.1: View camera setup

(a) (b)

Figure A.2: Ray-Tracing
(a) light rays contributing to the lighting seen at one pixel (b) a ray-traced image



A.1. IMAGE RENDERING 45

is emitted from a source such as the sun, reflects and refracts off objects within the
world, and finally enters an eye’s pupil to help constitute the photons that form the
eye’s sensory image of the world. Ray-tracing is based on the observation that these
physical laws governing light’s transport are consistent if applied backward. Instead
of starting from the light source and traveling to the eye, the eye sends out “feeler
rays” in the reverse direction to determine what objects are encountered.

Algorithm 3 color RayTrace(point x, direction ~r, int depth)

1: if depth ≥ MAXIMUM DEPTH then
2: return BLACK
3: else
4: ipoint ← ∅
5: for all objects Γ in world do
6: list ← set of intersection points of x + λ~r with Γ for λ ∈ (0, +∞)
7: if list contains a point closer to x than ipoint then
8: ipoint ← closest point
9: end if

10: end for
11: if ipoint == ∅ then
12: return BLACK
13: else
14: ~dr ← direction of reflected ray
15: ~dt ← direction of refracted (transmitted) ray
16: local color ← radiance determined by local material and light interactions
17: if Γ is not a light source then
18: reflection color ← RayTrace(ipoint, ~dr, depth+1)

19: transmission color ← RayTrace(ipoint, ~dt, depth+1)
20: else
21: reflection color ← local color
22: transmission color ← local color
23: end if
24: return Mix(local color, reflection color, transmission color)
25: end if
26: end if

The process of creating a ray-traced image proceeds as shown in algorithm
listing 4. Notice that the ray tracing subroutine terminates only upon reaching
some maximum depth of recursion, when intersecting the ray with a light source, or
upon shooting the ray off into the void. Ideally, there would not exist a limit to the
recursive depth; however, such a restriction is enforced to keep the computations
running within a prescribed time bound. Proper shadowing can be fit into this ray-
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Algorithm 4 void CreateRayTracedImage(void)

1: for all pixels p in the near plane do
2: ~r ← the ray direction passing from the pinhole through pixel p
3: p’s color ← RayTrace(pinhole, ~r, 0)
4: end for

tracing framework on line 16 of algorithm 3, in which the local color is computed
given some model of the local material and light interactions. At this stage, it is
straightforward to send shadow feeler rays from the intersection point ipoint to each
of the light sources in the scene (assumed here to be point sources for simplicity) and
check whether that light source is the closest object to ipoint. For each light source
that has no other objects occluding it, we can add it’s contribution to the local
color. We need only worry about direct illumination because any indirect lighting
will presumably be handled by the recursive calls to RayTrace().

Benefits of Ray-Tracing

Ray tracing produces convincing results because it models how light really behaves.
A number of refinements exist for allowing the ray-tracing technique to capture
advanced lighting effects such as caustics and volumetric fog. Especially pertinent
to this exposition is the fact that shadowing can be handled in a straightforward
manner.

Drawbacks of Ray-Tracing

Ray-tracing, although producing very high quality outputs, necessitates a degree of
computation that is currently infeasible for real-time rendering. For every pixel in
the image drawn, passes over the geometry must be made to perform intersection
tests. These tests generally prove to be quite costly and, even after optimizations,
prohibit full-fledged ray-tracing to be done at interactive frame rates.

A.1.2 Polygon Rasterization

Polygon rasterization refers to the process of converting polygons into a series of
parallel horizontal scanlines, or rasters, on a cathode-ray tube (CRT) or analogous
display. Each polygon is then rendered scanline by scanline. Rasterization takes
advantage of the fact that polygons are flat and that under linear and projective
transformations lines map to lines to speed up raster rendering. Given two points of
a polygon that transform to the endpoints of a raster, all the relevant information
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Figure A.3: Triangle Rasterization

about raster points in between can be computed by a series of linear and linear ratio-
nal interpolation steps, the details of which will be visited in section A.2. Although
the same basic properties will hold for any polygon, for simplicity and convenience
triangles are often chosen as the basic rendering primitive.

Algorithm 5 void RasterizeScene(void)

1: for all triangles Γ in the world do
2: V1,V2,V3 ← vertices of Γ transformed to near plane coordinates

{the rasters are determined by V1,V2,V3}
3: for all raster scanlines do
4: for all pixel locations p in raster do
5: interpolate to get color and depth for Γ at location p
6: if depth is closer to the near plane than previously seen depths at p then
7: color pixel p according to color
8: end if
9: end for

10: end for
11: end for

Algorithm listing 5 presents the core methodology for the rendering process
according to triangle rasterization. The depth value computed at each pixel location
is the perpendicular distance to the plane parallel to the near plane containing the
point on Γ seen through p. Determination of whether depth is the closest yet seen



48 APPENDIX A. BACKGROUND MATERIAL

value at p can be achieved by use of a depth buffer in which a buffer the size of
the pixel grid is created to store the closest encountered depth values for each pixel
location. This buffer is often also referred to as a z-buffer because view cameras are
usually set up to look down the negative direction of their ẑ-axis.

Benefits of Polygon Rasterization

Polygon rasterization is efficient because once the polygon’s vertices are mapped to
the near plane, interpolation can be used to fill in the convex hull – a process much
faster than performing intersection tests per pixel.

Drawbacks of Polygon Rasterization

Polygon rasterization, while fast because it can render a primitive with knowledge
of only the transformed vertices, treats each polygon independently and therefore
loses some of the more global information. In particular, a triangle rendered by
interpolation has no way of knowing which pixels if any correspond to portions of
the triangle occluded from the light by some other triangle. Rasterization therefore
requires a separate algorithm for determining shadowing information.

A.2 Texture Mapping Background

Texture mapping is the process of applying a two-dimensional image, or texture
map, to scene geometry. Texture maps get their name from the fact that images are
often mapped onto geometry to add greater detail to an object without increasing
geometric complexity. Often, such texture maps are mapped linearly onto a single
triangle or geometric primitive. However, texture maps can also be projected onto
world geometry as a slide projector would cast a slide’s picture onto the world. This
is termed projective texturing. Current graphics hardware has efficient methods for
handling both linear and projective applications of textures to world geometry.

Understanding the texturing process is important because shadow maps take
advantage of the same mechanism used to perform projective texturing for deter-
mining what lexel sample to reference at each pixel of the view image. The idea is
that taking a snapshot of geometry depth from the viewpoint of the light is anal-
ogous to projecting that depth map onto the world’s geometry and claiming each
sample value as truly representative of the depth of the geometry hit. This feature
of shadow mapping allows them to be implemented efficiently on current graphics
hardware and therefore allows for real-time rendering.
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To analyze the action of capturing a depth map from the perspective of the
light, we decompose the mapping process into two parts – a projective mapping
P and an orientation-preserving rigid motion M . M describes the position and
orientation (axes) of the light’s view. P maps a frustum aligned with the light’s
axes into a cube such that geometry can be orthographically projected to the near
plane to form an image. The motion M is further decomposed as the composition of
a translation T with a rotation R. At this point it is useful to differentiate between
the representation of points and of vectors in our system. Because we are interested
in affine and not simply linear motions 1, we append a fourth coordinate to the
usual (x, y, z) representation in 3D that is 0 for vectors and 1 for points. It is
easily verified that the usual intuitions concerning points and vectors are preserved
(e.g., the sum of two vectors is a vector, the sum of a point and vector is a point,
etc.). This convention allows us to write T and R as 4x4 real matrices. In a 2D
world, points and vectors are given three coordinates and the transformations are
represented with 3x3 matrices.

T is chosen to represent the translation from the origin to the light camera with
respect to world coordinates. R is the rotation with respect to world space necessary
to line up with the orientation of the light camera. Often in linear algebra it is
convenient to leave the basis of the space implicit and work only with coordinates.
However, when dealing with change of basis it is useful to utilize the “concrete to
abstract” map2. Let L be the matrix whose column vectors are the basis elements of
the light camera’s basis. Let W be the matrix whose columns represent the world’s
axes. Then, we can relate the two with:

L = WM = WTR

The transformation M = TR describes the mapping from world aligned axes to
the light camera’s axes. Then any point p described in coordinates with respect to
world space can be re-represented as coordinates in light space by observing:

Wp = (LM−1)p = L(M−1p)

Therefore the “abstract to concrete” map3 gives us M−1p as the coordinates of p
with respect to the light domain.

The projective transform takes a view frustum and maps it to the canonical
cube with coordinates ranging from -1 to +1. Since the projective transform is

1linear mappings do not describe all orientation-preserving Euclidean motions because it re-
quires the origin be mapped to the origin. Therefore it does not accommodate translations in
particular.

2writing the concrete coordinates as a linear combination of chosen basis vectors from an ab-
stract vector space

3writing a point in the abstract vector space as the coordinates, or coefficients, of the chosen
basis vectors
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meant to capture perspective, rays from the viewpoint’s origin diverge as they move
outward so that objects pulled farther away appear smaller on the near image plane.
The size of an object is inversely proportional to its distance from the view plane.

Although this inverse relation between near plane coordinates and object depth
exists, we nonetheless attempt to model the transformation with a matrix. A view
frustum can be defined in terms of six parameters: the near plane depth n, the far
plane depth f , the top and bottom extents of the near plane t and b, and the left
and right extents of the near plane l and r. The projection matrix that transforms
this frustum into the canonical cube is given by:

P =


− 2n

r−l
0 r+l

r−l
0

0 − 2n
t−b

t+b
t−b

0

0 0 f+n
f−n

− 2fn
n−f

0 0 −1 0


It is conventional to set up the camera such that in the camera’s frame, the direction
to the right corresponds to the x̂ axis, the upward direction corresponds to the ŷ
axis, and the viewer looks down the −ẑ axis. Therefore, n and f take on negative
values.

Notice that this matrix assumes the light’s near plane will always be perpen-
dicular to the light’s ẑ-axis. Therefore the matrix is completely determined by the
extents required to project light onto the entire scene of interest. So although we
conceptually understand shadow mapping’s degree of freedom as choosing an angle
for the light’s near (film) plane, algebraically we represent this as a choice of rotation
of the light’s basis. The light’s rotation will determine its ẑ-axis and therefore fix the
matrix P by the extents required to cover the light hull. This understanding puts
limits on allowable rotations of the light (or angles of the lexel plane). Any rotation
such that the light hull does not live entirely in the −z subspace is “invalid” because
P cannot be defined. Physically, this corresponds to requiring a finitely sized lexel
plane. Rotations such that the lexel plane shoots off to infinity are unrealizable.

Now we return to addressing the fact that projection is not an affine mapping
and therefore a 4x4 matrix multiplication cannot describe it fully. This projec-
tion matrix maps a point [x, y, z, 1]t represented in coordinates with respect to the
viewpoint’s axes to some point p′:

P


x
y
z
1

 =


x′

y′

z′

w

 = p′

Because the w coordinate has been setup by matrix P to store the depth of the
geometry as seen from the viewpoint, division of p′ by w yields the desired viewer’s
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post-projection coordinates [xv, yv, zv, 1]t (the division gives us the inverse distance
relationship required for perspective). By convention then, we will write p′ as:

p′ =


(xvw)
(yvw)
(zvw)

w


We now denote all points and matrices related to the view camera screen (pixel)

space with the subscript s and the points and matrices pertaining to the light’s
texture map space with the subscript t. We can then relate the transformation from
pixels to texture coordinates with the following mathematical statement:

VtPtM
−1
t MsP

−1
s V −1

s


xs

ys

zs

1


wt

ws

=


xt

yt

–
1


V represents the bijective mapping from a canonical cube’s near plane to the coor-
dinates of the grid overlayed on top of it. Here we have omitted a zt because we are
performing lookups on a 2D texture. The depth value of interest is obtained by the
actual lookup.

Note that the product VtPtM
−1
t MsP

−1
s V −1

s is a 4x4 matrix and therefore rep-
resents a linear transformation. Therefore linear movements in screen space coordi-
nates correspond to linear movements in

(xtq)
(ytq)

–
q


where q = wt

ws
. This means that given these values at a raster’s endpoints, all the

intermediate pixels texture coordinates can be computed by linear interpolation
followed by a division per pixel (to divide the interpolated xtq and ytq by the inter-
polated q value). This division of linear interpolants is referred to as linear rational
interpolation.

In the reduced dimension of flatland, these relations still hold; we simply drop
a coordinate.
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Appendix B

Proofs

B.1 Proving Constant dp
dl Over Each Polygon

Proposition 3

For arbitrary world geometry, constant dp
dl

on each polygon can be guaranteed if and
only if the light is positioned in the view plane perpendicular to the view direction.
Furthermore, the light direction must be oriented parallel to the view direction.

Proof: We seek to show that setting the light plane to be parallel to the viewer’s
near plane in the miner’s headlamp case leads to constant sampling density on each
polygon individually. To show this, we show that movements in screen space (over
a given polygon) correspond linearly to moving in texture space. As presented in
section A.2, texture coordinates for pixels in a raster are computed by noting that
the values: 

(xtq)
(ytq)

–
q


where q = wt

ws
are affine in the screen coordinates. This allows us to perform linear

rational interpolation to get the desired texture coordinates xt and yt. However,
notice that if q is a constant shared by each vertex, then linear interpolation yields
the same constant q everywhere within the polygon’s convex hull. Furthermore,
division by q at each pixel is just division by the same constant each time so we can
factor it out and notice that the texture coordinates are merely linearly interpolated
within a polygon. For constant q, linear rational interpolation is reduced to linear
interpolation. Under arbitrary world geometry assumptions, constant q is the only
case in which we can guarantee linear interpolation is sufficient to generate the
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correct texture coordinates because there clearly exists choices of world coordinates
in which linear interpolation will not yield the right values (linear interpolation
is not as expressive as linear rational interpolation). Having q constant for each
transformed world coordinate means wt = cws for some constant c.

To understand the behavior of ws and wt we can examine the following rela-
tions:

PlM
−1
l


x
y
z
1

 =


xtwt

ytwt

–
wt



PsM
−1
s


x
y
z
1

 =


xsws

ysws

–
ws


Notice that the last row of any projection matrix is given by [0, 0, -1, 0]. Therefore,
when fed the same world points [x, y, z, 1]t, the transformations will yield wt and
ws in constant ratio if the third rows of M−1

l and M−1
s are constant multiples of

each other. Each rigid motion M−1
i can be written as the composition of a rotation

and translation, R−1
i T−1

i .

T−1
i =


1 0 0 −tix
0 1 0 −tiy
0 0 1 −tiz
0 0 0 1


where ~ti is the position of camera i in world coordinates.

R−1
i =


~rix

t 0
~riy

t 0
~riz

t 0
0 0 0 1


where ~rik

t is the row vector representing the k-axis of camera i after rotation. The
third row of M−1

i is therefore given by [ — ~riz
t — ~riz · (−~ti) ]. The third rows

of M−1
i must be the same element wise up to the constant c. However, because

M−1
i is a rigid motion, ~riz

t is unit length for both cameras and therefore c = 1.
Consequently, ~riz

t is fixed and ~ti must be such that ~riz · (−~ti) is a shared constant
value. Let us denote that value k. Then for some ~t satisfying ~riz · ~t = k, we have:

~riz
t · (~t +4~t) = k

~riz · ~t + ~riz · 4~t = k

~riz · 4~t = 0
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So translations (and only such translations) perpendicular to ~riz are allowable be-
cause they preserve this property. ~rlz and ~rsz being fixed means the light whose
position and rotation is given by Ml must look down the same z-axis as the view
camera.
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